Chi-Tech
Chi-Tech Cross-section format 1

An example Chi-Tech cross section file is shown below. The bare-bones format is shown below with more examples below:

# This header can be as large as you please. The actual processing
# starts at NUM_GROUPS as the first word. After that, NUM_MOMENTS needs to
# be processed before any of the other keywords.
NUM_GROUPS 2
NUM_MOMENTS 2
SIGMA_T_BEGIN
0 0.5
1 0.5
SIGMA_T_END
Comments
TRANSFER_MOMENTS_BEGIN
#Zeroth moment (l=0)
M_GPRIME_G_VAL 0 0 0 0.01
M_GPRIME_G_VAL 0 0 1 0.09
M_GPRIME_G_VAL 0 1 1 0.08
#(l=1)
M_GPRIME_G_VAL 1 0 0 -0.001
M_GPRIME_G_VAL 1 0 1 0.001
M_GPRIME_G_VAL 1 1 1 0.001
TRANSFER_MOMENTS_END

Steady state simulations:

The cross sections can be used in simulations solving the steady state Linear Boltzmann Equation of the form:

\[ \vec{\Omega}_n \boldsymbol{\cdot} \vec{\nabla} \psi_{ng} + \sigma_{tg} \psi_{ng} = \sum_{\ell=0}^L \sum_{m=-\ell}^{+\ell} \frac{2\ell+1}{4\pi} Y_{\ell m} (\vec{\Omega}_n) \sum_{g'=0}^{G-1} \sigma_{s\ell,g'{\to}g} \phi_{\ell m,g'} + q_{ext,ng} + q_{fission,ng} \]

The two most prominent items required here includes $ \sigma_{tg} $ and $ \sigma_{s\ell,g'{\to}g} $. The latter is an entry in a structure we call a generic transfer matrix for moment $ \ell $ with rows $g=0..G-1$ and columns $g'=0..G-1$. These two items are often the only items required in a transport simulation.

In simulations with fission-sources, cross sections support two formats, the simple combined cross sections without delayed neutrons

\[ q_{fission,ng} = \frac{\chi_g}{4\pi} \sum_{g'=0}^{G-1} \nu_{g'} \sigma_{fg'} \phi_{00g'} \]

and those with delayed neutrons, the latter which are currently only used in the k-eigenvalue solver.

k-eigenvalue related items

As stated before, the cross section file supports two formats, the simple combined cross sections without delayed neutrons which are depicted above and those with delayed neutrons shown below

\[ q_{fission,ng} = \frac{\chi_g}{4\pi} \sum_{g'=0}^{G-1} \nu_{prompt,g'} \sigma_{fg'} \phi_{00g'} + \sum_{j=0}^{J-1} \frac{\chi_{delayed,jg}}{4\pi} \gamma_j \sum_{g'=0}^{G-1} \nu_{delayed,g'} \sigma_{fg'} \phi_{00g'} \]

.

Codes may also choose to update precursor concentrations for which their decay constants, $ \lambda_j $ are required.

Keyword definitions

More Advanced Examples

# This header can be as large as you please. The actual processing
# starts at NUM_GROUPS as the first word. After that, NUM_MOMENTS needs to
# be processed before any of the other keywords.
NUM_GROUPS 2
NUM_MOMENTS 2
NUM_PRECURSORS 3
SIGMA_T_BEGIN
0 0.5
1 0.5
SIGMA_T_END
Comments
SIGMA_F_BEGIN
0 0.01
1 0.40737
SIGMA_F_END
NU_PROMPT_BEGIN
0 2.45
1 2.45
NU_PROMPT_END
CHI_PROMPT_BEGIN
0 1.0
1 0.0
CHI_PROMPT_END
VELOCITY_BEGIN
0 2.2e10
1 272.145
VELOCITY_END
TRANSFER_MOMENTS_BEGIN
#Zeroth moment (l=0)
M_GPRIME_G_VAL 0 0 0 0.01
M_GPRIME_G_VAL 0 0 1 0.09
M_GPRIME_G_VAL 0 1 1 0.08
#(l=1)
M_GPRIME_G_VAL 1 0 0 -0.001
M_GPRIME_G_VAL 1 0 1 0.001
M_GPRIME_G_VAL 1 1 1 0.001
TRANSFER_MOMENTS_END
PRECURSOR_DECAY_CONSTANTS_BEGIN
0 0.1
1 0.2
2 0.3
PRECURSOR_DECAY_CONSTANTS_END
PRECURSOR_GAMMA_BEGIN
0 0.25
1 0.5
2 0.25
PRECURSOR_GAMMA_END
NU_DELAYED_BEGIN
0 0.01
1 0.02
2 0.01
NU_DELAYED_END
CHI_DELAYED_BEGIN
G_PRECURSOR_VAL 0 0 1.0
G_PRECURSOR_VAL 0 1 1.0
G_PRECURSOR_VAL 0 2 1.0
G_PRECURSOR_VAL 1 0 0.0
G_PRECURSOR_VAL 1 1 0.0
G_PRECURSOR_VAL 1 2 0.0
CHI_DELAYED_END