Chi-Tech
rpk_doc.h
Go to the documentation of this file.
1
/**\defgroup prk Point Reactor Kinetics
2
\ingroup LuaModules
3
4
This module concerns itself with the solution of the Point-Reactor Kinetics
5
equations:
6
\f[
7
\label{Eq:1}
8
\frac{dn}{dt} = \frac{\beta_{eff} (\rho(t)-1)}{\Lambda_0} n(t) +
9
\sum_{j=0}^{J-1} \lambda_j c_j(t) + s_{ext}(t)
10
\f]
11
\f[
12
\label{Eq:2}
13
\frac{c_j}{dt} = \frac{\beta_j}{\Lambda_0} n(t) - \lambda_j c_j(t)
14
\quad for \ j=0,1,\dots,J-1
15
\f]
16
where the primary unknowns are the neutron population, \f$ n \f$, and each of
17
the delayed-neutron precursors concentrations, \f$ c_j \f$. The reactivity,
18
\f$ \rho \f$ in units of $, and the external source, \f$ s_{ext} \f$, are both
19
variable knowns/inputs, whereas the values \f$ \lambda_j, \beta_j ,
20
\Lambda_0\f$, are known constants. The decay constants, \f$ \lambda_j \f$,
21
are in units of \f$ [s^{-1}]\f$ and the delayed neutron fractions,
22
\f$ \beta_j \f$, have no units. \f$ \beta_{eff} \f$ is the total delayed neutron fraction,
23
\f[
24
\label{Eq:3}
25
\beta_{eff} = \sum_{j=0}^{J-1} \beta_j
26
\f]
27
and \f$ \Lambda_0 \f$ is the neutron generation time.
28
29
Consult the whitepaper for this solver at `modules/PointReactorKinetics/doc`.
30
*/
31
modules
PointReactorKinetics
doc
rpk_doc.h
Generated by
1.9.3