
Whitepaper:

Diffusion Solver in ChiTech

August, 2018

Jan Vermaak

Rev 1.00

Contents

Page

1 Introduction 3

2 Finite Volume 4

2.1 Discretization . 4

2.2 Discretization on Orthogonal grids . 5

2.2.1 Terminology . 5

2.2.2 Weighted harmonic mean of a quantity D at a face 5

2.2.3 Flux of a gradient . 5

2.2.4 Assembling the linear system . 5

2.3 Discretization on Unstructured grids . 7

2.3.1 Terminology . 7

2.3.2 Weighted harmonic mean of a quantity D at a face 7

2.3.3 Flux of a gradient . 8

2.3.4 Computing gradients using Green-Gauss . 9

2.3.5 Computing gradients using weighted Least-Squares 10

2.3.6 Assembling the linear system . 10

2.4 Boundary conditions . 11

2.4.1 Dirichlet boundary conditions φN = φB . 11

2.4.2 Neumann boundary conditions Af · (D∇φ)f = F . 12

2.4.3 Robin boundary conditions aφ+ bAf · (D∇φ)f = F 12

2.5 Sparsity pattern . 13

2.5.1 Base block . 13

2.5.2 Multiblock . 13

3 Continuous Finite Element Method 15

3.1 Discretization . 15

3.1.1 Weak form . 15

3.1.2 Application of basis functions . 16

3.1.3 Assembling the linear system of equations . 17

3.2 Boundary conditions . 18

3.2.1 Robin and Neumann type boundary conditions . 18

3.2.2 Dirichlet type boundary conditions . 19

3.3 Sparsity pattern . 20

3.3.1 Base block . 20

3.3.2 Multiblock . 22

1

Introduction

4 Discontinuous Finite Element Method 23

4.1 Part A . 24

4.2 Part B . 24

4.3 Part C . 25

Diffusion Solver in ChiTech Page 2 of 26

Introduction

1 Introduction

The “generalized diffusion solver” in Chi-Tech is based on a well known partial differential equation known

as the diffusion equation. This equation can be used to model the behavior of many physical systems

and has been studied in great depth for many years by engineers, scientists and mathematicians. The

equation for a single unknown, φ, has the general time dependent linear form

dφ

dt
= ∇ · (D∇φ)− σφ+ q (1.1)

and can be outfitted with a number of different boundary conditions including Dirichlet-type, Neumann-

type, and Robin-type boundary conditions. Different spatial discretizations can be applied to the equa-

tion including Finite Difference (FD), Finite Volume (FV), Continuous Galerkin Finite Element Method

(CFEM), and Discontinuous Galerkin Finite Element (DFEM). In Chi-Tech the available spatial dis-

cretizations are FV, CFEM and DFEM. Additionally, different time discretizations can be applied for

which Chi-Tech for now supports Forward Euler, Backward Euler, and Crank-Nicholson.

The steady state form of the diffusion equation will be used in this whitepaper to detail the different

spatial discretization techniques and is denoted by

−∇ · (D∇φ) + σφ = q. (1.2)

This equation can be related to techniques contained in literature under certain conditions. When the

removal term (σφ) is removed and D=1 then the equation becomes Poisson’s equation

∇ · (∇φ) = −q, (1.3)

and if the spatial source term, q, is also removed then the equation becomes Laplace’s equation

∇ · (∇φ) = 0. (1.4)

In both these forms the divergence of the gradient (∇ ·∇φ) is replaced by the Laplacian operator, ∇2,

which can generally denoted by the symbol ∆ after which the following are equivalent

∇ ·∇φ = 0

∇2φ = 0

∆φ = 0

(1.5)

Diffusion Solver in ChiTech Page 3 of 26

Finite Volume

2 Finite Volume

2.1 Discretization

The FV method associates only a single value of the unknown per cell, located at the cell centroid, and is

discretized by first integrating equation (1.2) over the cell volume

−
∫
V
∇ · (D∇φ) dV +

∫
V
σφ dV =

∫
V
q dV (2.1)

after which we apply Gauss’ divergence theorem to the first term

−
∫
V
∇ · (D∇φ) dV = −

∫
S

n · (D∇φ) dA (2.2)

and then apply discretized integration over cell volume, V , and cell face areas, Af ,

−
∑
f

Af · (D∇φ)f + V (σφ) = V q, (2.3)

where Af = Afnf is the face area vector. This formulation is not complete until we have a discretized

expression for (D∇φ)f . The problem in depicting the details of this term in a Finite Volume discretization

scheme is that it has a tremendously simplistic representation on orthogonal grids, and a significantly more

complicated representation in unstructured grids. Generally the prior (on orthogonal grids) exhibits 2nd

order convergence, however, the latter requires more care because the possibility of skewed faces can cause

the method to become less than 1st order accurate.

The next two sections are devoted to separately describe the discretization on orthogonal and unstruc-

tured grids, respectively. Ultimately the unstructured implementation will be used since it is unifying,

however, the general process can be observed on the orthogonal grid detail.

Diffusion Solver in ChiTech Page 4 of 26

Finite Volume

2.2 Discretization on Orthogonal grids

2.2.1 Terminology

Figure 1 below contains a graphic depiction of orthogonal 2D cells which we will use the define numerous

concepts.

b b
P N

b
F

dPF

PN

dPN

Af

n

Figure 1: Reference vector layout for neighboring cells on an orthogonal grid.

The points P, N and F are the present-cell-, neighboring-cell- and adjoining-face-centroids, respectively.

The vector PF is from P to F and its length is used as dPF . Similarly the vector PN is used to define

dPN .

2.2.2 Weighted harmonic mean of a quantity D at a face

Some quantities, like the diffusion coefficient, require the harmonic mean at the faces. For orthogonal grids

this requires a weighted harmonic mean where the weight requires the definition of

rO =
dPF

dPN
(2.4)

after which the harmonic mean is defined as

Df =

(
rO
DP

+
1− rO
DP

)−1
(2.5)

2.2.3 Flux of a gradient

With the definition of face diffusion coefficient the required term in equation (2.3) becomes

Af • (D∇φ)f = Df
Af

dPN

(
φN − φP

)
(2.6)

2.2.4 Assembling the linear system

We now proceed by inserting eq. (2.6) into eq. (2.3), and mark values at iteration (n) to be implicit and

values at (n− 1) as explicit, to get

Diffusion Solver in ChiTech Page 5 of 26

Finite Volume

−
∑
f

Df
Af

dPN

(
φN − φP

)(n)

+ V σφ
(n)
P = V q

(n−1)
P (2.7)

This can then be simplified into a coefficient formulation

aPφP +
∑
f

aNfφN = bN

where

aP =
∑
f

Df
Af

dPN
+ V σ

aNf = −Df
Af

dPN

bN = V q
(n−1)
P

The final process is to assemble this coefficient formulation for each cell P where each index N and P

maps to a given i, j matrix or i vector index. The methodology to obtain these i, j indices requires some

machinery to be developed relating to sparsity patterns which will be discussed next.

Diffusion Solver in ChiTech Page 6 of 26

Finite Volume

2.3 Discretization on Unstructured grids

2.3.1 Terminology

Figure 2 below contains a graphic depiction of unstructured 2D cells which we will use to define numerous

concepts.

b

b

b

Present Cell (P)
Neighbor Cell (N)

P

N

F

b
Fi

ePN

n

b

et

Figure 2: Reference vector layout for neighboring cells on an unstructured grid.

The points P, N and F are the present-cell-, neighboring-cell- and adjoining-face-centroids, respectively.

The vector PN is from P to N, and the projection of PF onto PN is at point Fi (not actually at the

intersection of PN with the face). The vector ePN is the unit vector along PN computed from PN/dPN ,

where dPN = ||PN||2. The vector et is the unit tangential vector formed from et = ePN −n, with n being

the face normal. The distance from P to Fi, dPFi , is computed as dPFi = PF • ePN , and Fi = P+dPFi ePN .

2.3.2 Weighted harmonic mean of a quantity D at a face

Some quantities, like the diffusion coefficient, require the harmonic mean at the faces. For unstructured

grids this requires a weighted harmonic mean where the weight requires the definition of

rP =
dPFi

dPN
(2.8)

after which the harmonic mean is defined as

Df =

(
rP
DP

+
1− rP
DP

)−1
(2.9)

Diffusion Solver in ChiTech Page 7 of 26

Finite Volume

2.3.3 Flux of a gradient

We can now develop the computation of Af • (Df∇φ)f . When we deal with skewed faces, this diffusion

term needs some treatment. In general, since the face is skewed, the flux at the cell face develops additional

components other than the orthogonal component along the direction of PN. These additional components

are not intuitive to understand. Refer to Figure 3 below for the following discussion.

b

bc

bcP

N

F

b
Fi

b

b

bP

N

F

b
Fi

b

b

Perpendicular Flux Tangential Flux

At

Ap

P′

N′

Figure 3: Decomposed areas for the interpolation of a gradient flux

Given that the correct way to approximate the flux across the face is to compute the gradient along its

centroid, we require the gradient to be computed from φP ′ and φN ′ along the projected perpendicular area

Ap. Additionally we need to compute the flux along the tangential area At. Including these terms within

an implicit formulation is, however, cumbersome to say the least. Instead we include explicit corrections

as described in [2].

Firstly, we formulate the fluxes at P′ and N′ (see the left schematic in Figure 3) as

φP ′ = φP + (∇φ)
(n−1)
P

• FiF

φN ′ = φN + (∇φ)
(n−1)
N

• FiF
(2.10)

where FiF is the vector from Fi to F and the gradients are computed from the previous iteration’s flux

field. The perpendicular gradient term can then be computed from(
Af • (∇φ)f

)
p

=
Ap

dPN

(
φN ′ − φP ′

)
=

Ap

dPN

(
φN − φP

)
+

Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF

Diffusion Solver in ChiTech Page 8 of 26

Finite Volume

where Ap = Af/(ePN • n). Secondly, the tangential component can be computed from(
Af • (∇φ)f

)
t

= (∇φ)F • At

≈ (∇φ)
(n−1)
Fi

• At

(2.11)

where At = Af−ApePN and the gradient at the face centroid is approximated by the gradient interpolated

at Fi which is not an unreasonable approximation considering that cell skewness is normally minimized.

Putting it all together we have

Af • (∇φ)f =
Ap

dPN

(
φN − φP

)
+

Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF + (∇φ)

(n−1)
Fi

• At (2.12)

In these equations we require the explicit value of (∇φ)n−1 which can be computed using different methods,

i.e., Green-Gauss and Weighted least-squares. These two methods will now be detailed.

2.3.4 Computing gradients using Green-Gauss

This formulation is identical to “Option 3” of chapter 9.2 in the book by Moukalled et al. [1]. The first

order Green-Gauss approximation reduces essentially to a summation over faces.

∇φ =
1

V

∑
f

Afφf (2.13)

where φf is taken as a linear interpolation between the adjoining face’s cells. This formulation poses

some challenges when undetermined faces fluxes are encountered, as is the case with boundaries and un-

structured meshes, and therefore we require an algorithm to compensate. Therefore the following algorithm

is applied:

1. Compute ∇φ(n) over the entire domain using 1
V

∑
f Afφf where φf is computed from (??) as

φf = (1− rP)φP + (rP)φN+

[
(1− rP)∇φP + (rP)∇φN

](n−1)
• FiF

and boundary faces are computed as

φb = φP + ∇φ
(n−1)
P

• PF

2. Compute ||∇φ(n) −∇φ(n−1)||2. If ||∇φ(n) −∇φ(n−1)||2 < ε then terminate.

3. Swap ∇φ(n) and ∇φ(n−1).

Diffusion Solver in ChiTech Page 9 of 26

Finite Volume

4. Repeat 2 to 4.

In most cases the iteration process adds little to the iterative performance and it can be sufficient to

just terminate after a single iteration.

2.3.5 Computing gradients using weighted Least-Squares

Section 9.3 in [1] provides a very good description of how the weighted Least-Squares gradients are deter-

mined. In that formulation{∑
f wfPN⊗PN

}
∇φP =

∑
f

[
wfPN(φN − φP)

]
where

wf =
1

(||PN||2)2

and the term in {} is a tensor. On boundaries, PN and φN is replaced by PF and φb.

Note that this results in a system that needs to solved for each cell.

2.3.6 Assembling the linear system

With all the individual pieces of functionality established we can now determine how to assemble the linear

system. We start with eq. (2.3) where now we insert eq. (2.12), and mark values at iteration (n) to be

implicit and values at (n− 1) as explicit, after which we get

−
∑
f

Df

[
Ap

dPN

(
φN − φP

)(n)

+
Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF + (∇φ)

(n−1)
Fi

• At

]
+ V σφ

(n)
P = V q

(n−1)
P

(2.14)

which we can arrange to have all the implicit values to the left

−
∑
f

Df

[
Ap

dPN

(
φN − φP

)(n)]
+ V σφ

(n)
P = V q

(n−1)
P

+
∑
f

Df

[
Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF + (∇φ)

(n−1)
Fi

• At

]
.

(2.15)

This can be simplified into a coefficient formulation

aPφP +
∑
f

aNfφN = bN (2.16)

Diffusion Solver in ChiTech Page 10 of 26

Finite Volume

where

aP =
∑
f

Df
Ap

dPN
+ V σ

aNf = −Df
Ap

dPN

bN = V q
(n−1)
P +

∑
f

bNf

bNf = Df

[
Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF + (∇φ)

(n−1)
Fi

• At

]
.

(2.17)

The final process is to assemble this coefficient formulation for each cell P where each index N and P

maps to a given i, j matrix or i vector index. The methodology to obtain these i, j indices requires some

machinery to be developed relating to sparsity patterns which will be discussed next.

2.4 Boundary conditions

2.4.1 Dirichlet boundary conditions φN = φB

A Dirichlet boundary condition manifests in the Af • (D∇φ)f term where we start with

Af • (∇φ)f =
Ap

dPN

(
φN − φP

)(n)

+
Ap

dPN

(
(∇φ)N − (∇φ)P

)(n−1)
• FiF + (∇φ)

(n−1)
Fi

• At

and note that the definition of FiF requires the projection of PF onto PN, however, in this case the vectors

PF and PN are the same and therefore Fi equals F from which it follows that FiF is zero in magnitude.

We also know that (∇φ)N = 0 and therefore (∇φ)
(n−1)
Fi

just becomes the projection of (∇φ)P to F. Since

(∇φ)P is constant over the whole cell, (∇φ)
(n−1)
Fi

is simply taken to be equal to (∇φ)P from which we now

have

Af • (D∇φ)f = Df

[
Ap

dPN

(
φB − φ(n)P

)
+ (∇φ)

(n−1)
P

• At

]

Note the substitution of φN = φB, Df = DP , and the change to the iteration indices. This term then

alters, for face f∗, the aNf and bNf coefficients in eq. (2.17) as

aNf∗ = 0

bNf∗ = Df∗

[
Ap

dPN
φB + (∇φ)

(n−1)
P

• At

]

Diffusion Solver in ChiTech Page 11 of 26

Finite Volume

2.4.2 Neumann boundary conditions Af · (D∇φ)f = F

This type of a boundary condition specifies an area flux on face f∗ and reduces simply to the modifications

aP =
∑
f

f 6=f∗

Df
Ap

dPN
+ V σ

aNf∗ = 0

bNf∗ = F

2.4.3 Robin boundary conditions aφ+ bAf · (D∇φ)f = F

A Robin-type boundary condition is a combination of a Dirichlet boundary condition and a Neumann

boundary condition. It can be incorporated in the form

Af · (D∇φ)f =
F

b
− a

b
φP

which requires the coefficients in (2.17) to be altered, for face f∗, as

aP =
∑
f

f 6=f∗

Df
Ap

dPN
+ V σ +

a

b

aNf = 0

bNf =
F

b

Diffusion Solver in ChiTech Page 12 of 26

Finite Volume

2.5 Sparsity pattern

2.5.1 Base block

The parallel sparsity pattern for matrix assembly requires node ordering in a single block-sense (base

block) as depicted in Figure 4 below. The nodes are cell centered and the base blocks are dependent on

the number of cells. The local base block size (i.e., number of entries) is the number of local cells and the

global base block size is the total number of cells (globally).

auto fv = new SpatialDiscretization_FV ;
spatial_discretization = fv ;

fv−>AddViewOfLocalContinuum (grid) ;
fv−>AddViewOfNeighborContinuums (grid) ;
fv−>ReOrderNodes (grid) ;

After nodal reordering all partition locations will have two populated arrays, locJ block address and

locJ block size , indexed by partition-id (i.e., processor 15: locJ block address[15]).

The locJ block address array contains the global address where each partition’s base block starts

and the locJ block size array contains each partitions base block size.

b b

b b
b

globl base block size

locJ block size[0]

locJ block size[1]

b

b

b

partition-0

partition-1

cell-0 cell-1

cell-2 cell-3
cell-0

cell-1

cell-2

cell-3

partition-0 partition-1

locJ block address[0]

locJ block address[1]

local base block size
0

1

2

3

Figure 4: Base block node ordering for the Finite Volume discretization method.

2.5.2 Multiblock

For mutliple degrees-of-freedom per node Chi-Tech supports two storage modes: Nodal and Block. Nodal-

storage creates a block of unknowns per node, i.e., given a node address, the DOF-addresses will follow

sequentially for each unknown. In contrast, Block-storage creates a block for each unknown, i.e., each

block contains all the nodes but only a single unknown. The addressing scheme is determined as shown in

Figure 5 below which depicts 3 unknown (DOFs) per node. The color coding blue, green and red denotes

the particular unknown, i.e., Velocity-x,y,z, or Groups 0,1,2.

Diffusion Solver in ChiTech Page 13 of 26

Finite Volume

b
b
b

b

b

b
b

b
b

b

b

b
b

b
b

b
b
b

b
b
b

b
b

b
b
b

b

locJ block address[1]×N

cell-0

cell-1

cell-2

cell-3

0

1

0

1

Global IDs Local IDs

+NLC1 ×0 +0

+1
+NLC1 +0

+1
+NLC1 +0

+1

×1

×2

locJ block address[1]×N

+0×N

+1×N

+0

+1

+2

+0

+1

+2

address= locJ block address×N
+NLC×blockid
+cell local-id

address= locJ block address×N
+(cell local-id)×N

+blockid

NLC Number of local cells

Number of unknowns
Unknown blockid 0

Unknown blockid 1

Unknown blockid 2

(locJ block size)

N

Block DOF-storage Nodal DOF-storage

Figure 5: Addressing scheme for multiblock unknowns with the Finite Volume discretization method.

Diffusion Solver in ChiTech Page 14 of 26

Continuous Finite Element Method

3 Continuous Finite Element Method

3.1 Discretization

3.1.1 Weak form

As a preface to the spatial discretization using CFEM and DFEM we first introduce the general weak form

of the diffusion equation. We proceed with multiplying with ϕi, a function mapping eq. (1.1) to a trial

space Di for which we require that∫
Di

(
− ϕi∇ • (D∇φ)

)
.dV +

∫
Di

(ϕiσaφ).dV =

∫
Di

(ϕiq).dV. (3.1)

In this equation we note that, from the product rule we have

d(fg)

dx
=
df

dx
· g + f · dg

dx

∴
∫
d(fg)

dx
.dx =

∫
df

dx
· g.dx+

∫
f · dg

dx
.dx

Applying this as an analogy with f = ϕ and g = D∇φ we get the “integration by parts” formulation∫
Di

∇ • (ϕiD∇φ).dV =

∫
Di

∇ϕi •D∇φ.dV +

∫
Di

ϕi∇ • (D∇φ).dV

∴ −
∫
Di

(
ϕi∇ • (D∇φ).dV

)
=

∫
Di

∇ϕi •D∇φ.dV −
∫
Di

∇ • (ϕiD∇φ).dV

(3.2)

Now applying Gauss’s Divergence theorem on the last term we have∫
Di

∇ • (ϕiD∇φ).dV =

∫
∂D

n · ϕiD∇φ.dA (3.3)

which we can place in equation 3.2 and then subsequently into equation 3.1 which leads to the weak form

∫
Di

(
∇ϕi •D∇φ+ ϕiσaφ

)
.dV −

∫
∂D

(
n · ϕiD∇φ

)
.dA =

∫
Di

(ϕiq).dV . (3.4)

Diffusion Solver in ChiTech Page 15 of 26

Continuous Finite Element Method

3.1.2 Application of basis functions

Consider φ approximated by the contributions of basis functions, Nj , and associated coefficients φj , i.e.

φ ≈ φh =
N∑
j=0

φjNj . (3.5)

Also consider the source q as being a combination of: a constant-per-element component, qc, and a non-

constant-per-element component, qnc. The non-constant component can then also be expandedusing basis

functions and coefficients

qnc ≈ qnc,h =

N∑
j=0

qnc,jNj . (3.6)

Equation 3.4 now becomes

∫
Di

(
∇ϕi •D∇(

N∑
j=0

φjNj) + ϕiσa(
N∑
j=0

φjNj)

)
.dV −

∫
∂D

(
n • ϕiD∇(

N∑
j=0

φjNj)

)
.dA

=

∫
Di

ϕiqc.dV +

∫
Di

ϕi(

N∑
j=0

qnc,jNj).dV

after which we can move the ∇ operator such that∫
Di

(
∇ϕi •D(

N∑
j=0

φj∇Nj) + ϕiσa(
N∑
j=0

φjNj)

)
.dV −

∫
∂D

(
n • ϕiD(

N∑
j=0

φj∇Nj)

)
.dA

=

∫
Di

ϕiqc.dV +

∫
Di

ϕi(

N∑
j=0

qnc,jNj).dV

We now take into account that each integral over a trial space Di is a summation over all the elements K
that fall within this space. I.e.

Trial space i

K∑[∫
Di

(
∇ϕi •D(

N∑
j=0

φj∇Nj) + ϕiσa(

N∑
j=0

φjNj)

)
.dV −

∫
∂D

(
n • ϕiD(

N∑
j=0

φj∇Nj)

)
.dA

]

=

K∑[∫
Di

(ϕiqc).dV +

∫
Di

ϕi(
N∑
j=0

qnc,jNj).dV

]

Diffusion Solver in ChiTech Page 16 of 26

Continuous Finite Element Method

Rearranging

K∑ N∑
j=0

[∫
Di

(
∇ϕi •D(φj∇Nj) + ϕiσa(φjNj)

)
.dV −

∫
∂D

(
n · ϕiD(φj∇Nj)

)
.dA

]

=
K∑[∫

Di

(ϕiqc).dV

]
+

K∑ N∑
j=0

[∫
Di

ϕi(qnc,jNj).dV

]

∴
K∑ N∑

j=0

φj

[
D

∫
Di

∇ϕi •∇Nj .dV + σa

∫
Di

ϕiNj .dV −D n •

∫
∂D
ϕi∇Nj .dA

]

=
K∑[

qc

∫
Di

ϕi.dV

]
+

K∑ N∑
j=0

[
qnc,j

∫
Di

ϕiNj .dV

]

By using the same shape functions for the test functions as was used for the basis functions, ϕi = Ni, we

have the following, Galerkin-form of the equations

∴
K∑ N∑

j=0

φj

[
D

∫
Di

∇Ni •∇Nj .dV + σa

∫
Di

NiNj .dV −D n •

∫
∂D
Ni∇Nj .dA

]

=

K∑[
qc

∫
Di

Ni.dV

]
+

K∑ N∑
j=0

[
qnc,j

∫
Di

NiNj .dV

] (3.7)

Computing the integrals of different combinations of the shape functions is specific to the type of element

used, i.e. 1D slab, 2D triangle, 2D polygon, 3D tetrahedron, 3D polyhedron, etc. This information is

contained in relevant whitepapers.

3.1.3 Assembling the linear system of equations

With each trial space representing an equation, we can assemble a row of a matrix A and an associated

entry in the vector b as

For each element k, for each DOF-i, for each DOF-j

aij = aij +D

∫
Di

∇Ni ·∇Nj .dV + σa

∫
Di

NiNj .dV −D n ·
∫
∂D
Ni∇Nj .dA (3.8)

bi = bi + qnc,j

∫
Di

NiNj .dV (3.9)

For each element k, for each DOF-i

bi = bi + qc

∫
Di

Ni.dV (3.10)

Diffusion Solver in ChiTech Page 17 of 26

Continuous Finite Element Method

3.2 Boundary conditions

There are 2 primary types of boundary conditions implemented in ChiTech; Dirichlet type boundary

conditions and Robin type boundary conditions.

3.2.1 Robin and Neumann type boundary conditions

A Neumann boundary condition takes the form

−Dn ·∇φ = f on ∂D

where f represents a function. This representation is trivial to implement in the equation for aij since

it essentially means the integral on the boundary is a known and can hence be moved to the right hand

side. Hence the equations to do so simply become

aij = aij +D

∫
Di

∇Ni ·∇Nj .dV + σa

∫
Di

NiNj .dV −
�����������

D n ·
∫
∂D
Ni∇Nj .dA

bi = bi + qnc,j

∫
Di

NiNj .dV − fj
∫
∂D
NiNj .dA

and the rest remaining untouched.

In the case of a Robin boundary condition the form is similar;

αφ+ βDn ·∇φ = f on ∂D

however, this time around there is a component still dependent on φ which must remain on the left

hand side. The equations are

aij = aij +D

∫
Di

∇Ni ·∇Nj .dV + σa

∫
Di

NiNj .dV −
�����������

D n ·
∫
∂D
Ni∇Nj .dA+

α

β

∫
∂D
NiNj .dA

bi = bi + qnc,j

∫
Di

NiNj .dV +
fj
β

∫
∂D
Nibj .dV

With this notation we can see that by using a Robin boundary condition with α = 0 and β = −1 we can

essentially specify a Neumann boundary condition.

The versatility of this boundary condition can also be extended to Vacuum boundary conditions in

neutron diffusion which take the form

1

4
φ+

1

2
Dn ·∇φ = 0 on ∂D

representing a zero incoming current. It is simple to see that using the values α = 1
4 , β = 1

2 and f = 0

one can specify a vacuum boundary condition using a Robin boundary condition.

Diffusion Solver in ChiTech Page 18 of 26

Continuous Finite Element Method

3.2.2 Dirichlet type boundary conditions

The Robin type boundary conditions does not have the potential to destroy the symmetry of the matrix.

Dirichlet boundary conditions on the other hand do have this potential. The Dirichlet boundary conditions

takes the simple form

φ = c on ∂D.

Since none of the weak form equations have components of this form there is only one possible contri-

bution to aij and that is

aii=1 aij = 0

bi = c

Now, it is fairly trivial in theory to apply this process, however, with the finite element method normally

assembling the matrix element-by-element the dirichlet boundary conditions will have to be applied after

the element-by-element assembly. Additionally, the dirichlet process zeros out the non-diagonal columns

of the given row. This is a problem because the rest of the element-by-element assembly connected other

DOFs to the dirichlet DOF via the columns of their respective rows and hence if we do but zero out the

non-diagonal components of the matrix row then we are left with a non-symmetric matrix.

In ChiTech the whole mess of Dirichlet boundary conditions is handled by modifying the element-by-

element assembly process to never connect DOFs to the known dirichlet nodes. For a better understanding

of how this is done please consult the coding implementation section.

Diffusion Solver in ChiTech Page 19 of 26

Continuous Finite Element Method

3.3 Sparsity pattern

3.3.1 Base block

Let us now consider a simple 2D arrangement of 4×4 cells as shown in Figure 6 below. For a continuous

finite element method the solution is defined on the nodes of the mesh whereas the cells are distributed on

processors depicted with colors. This brings some choice on which processor will own a given node when

shared.

auto pwl = new SpatialDiscretization_PWL (0 ,
chi_math : : SpatialDiscretizationType : : PIECEWISE_LINEAR_CONTINUOUS) ;

spatial_discretization = pwl ;

pwl−>AddViewOfLocalContinuum (grid) ;
pwl−>OrderNodesCFEM (grid) ;

bbbbb

b b b b b

bbbbb

bbbbb

bbbbb

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

partition 0

partition 1

partition 2

partition 3

ghost nodes

ghost nodes

Figure 6: Simple CFEM arrangement of cells colored by processor ownership.

Nodal re-ordering is applied to the nodes of the mesh with a call to (ReorderNodesPWLC). This process is

a two stage process:

Stage 1:

• First all the nodes relevant to a process is collected into a set of exclusive and non-exclusive nodes.

This involves a loop over all the nodes associated with a local cell.

• Another loop is executed over local cells, however, this time we loop over faces and then face nodes.

If a face is on a process boundary then node indices associated with all the face nodes are flagged as

being ghosted.

• Using the ghost flags, a list of exclusive nodes is creater as well as a list of non-exclusive nodes.

• A ring communication is then used to communicate all the ghost nodes from location i to location

i+ 1 with the last location ending up with the complete list of ghost nodes.

Diffusion Solver in ChiTech Page 20 of 26

Continuous Finite Element Method

• The last location then broadcasts the completed ghost node set to all other locations.

Stage 2:

• The ghost nodes are broken into 2P − 2 pieces (2 pieces per location, first and last locations get only

1 piece). If the amount of ghost nodes are not divisible they are stored as the remainder which will

get subdivided between the first and last location.

• With this information in hand each processor can determine the portion of the matrix it owns provided

it knows the starting row. At this point only the first processor knows its ownership start ... its row

0. Therefore we initiate another ring communication. Each location takes its starting location, adds

the local exclusive nodes, then the portion of the ghost nodes its been given and then sends the next

location its starting location.

• Perform the mapping of original node indexes to distributed node indices.

This process can be visualized as depicted in Figure 7 below. The ordering allows for minimal commu-

nication between processes and overall low bandwidth when the amount of rows per processor is small. If

further bandwidth reduction is required then a suitable reordering is required per process to reorder the

exclusive nodes.

20

21

15

16

23

24

18

19

5

6

0

1

8

9

3

4

10

11

12

13

14

22

17

7

2

20

21

15

16

10

23

24

18

19

11

12

5

6

0

1

8

9

3

4

13

14

22

17

7

2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

local nodes

ghost nodes

local nodes

ghost nodes

partition

locJ block address[1]

locJ block size[1]

node mapping[5]

Stage 1 Stage 2

Figure 7: Stages of node ordering for CFEM.

Diffusion Solver in ChiTech Page 21 of 26

Continuous Finite Element Method

After nodal reordering all partition locations will have three populated arrays, node mapping , locJ block address

and locJ block size .

The node mapping array maps a global node to the new parallel ordering and is indexed by node global

id whereas the latter two are indexed by partition-id (i.e., processor 15: locJ block address[15]).

The locJ block address array contains the global address where each partition’s base block starts

and the locJ block size array contains each partitions base block size.

3.3.2 Multiblock

For multiple degrees-of-freedom per node Chi-Tech support two storage modes: Nodal and Block. Nodal-

storage creates a block of unknowns per node, i.e., given a node address, the DOF-addresses will follow

sequentially for each unknown. In contrast, Block-storage creates a block for each unknown, i.e., each

block contains all the nodes but only a single unknown. Multiblock addressing is applied as shown

b
b

Number of unknowns
Unknown blockid 0

Unknown blockid 1

N

b
...

b
b
...

b

...
b
b
...

b

locJ block address[3]×N

NLB Local block size

×0

×1

+NLB3

+NLB3

address= locJ block address×N
+NLB×blockid
+node mapping[i]-locJ block address[p]

b
b
...

b
b

...

b
b
...

b
b

...

... node mapping[i]×N

+1

address= node mapping[i]×N
+blockid

Block DOF-storage Nodal DOF-storage

Figure 8: Addressing scheme for multiblock unknowns with the CFEM discretization method.

Diffusion Solver in ChiTech Page 22 of 26

Discontinuous Finite Element Method

4 Discontinuous Finite Element Method

Instead of a Continuous Finite Element Method (CFEM) discretization, where the solution is defined on

nodes, the Discontinuous Finite Element Method (DFEM) stores values per cell-nodes. The complication

with using this formulation is then that the connectivity between cells is not as easy to determine as it was

for CFEM discretization.

The weak form of the diffusion equation is extended as can be observed in the paper by Ragusa,

repeated here, the interior penalty method matrix takes on the form

a(δφ, bi) = (σaδφ, bi)D + (D∇δφ,∇bi)D
+ (κMIP JδφK, JbiK)f + (JδφK, {{D∂nbi}})f + ({{D∂nδφ}}, JbiK)f

+ (κMIP δφ, bi)∂D −
1

2
(δφ,D∂nbi)∂D −

1

2
(D∂nδφ, bi)∂D

where the jump and average operators are defined across an interface as

JuK = u+ − u−

{{u}} =
1

2
(u+ + u−)

The definition of κMIP is discussed in a later section. The ± is associated with the sense the given cell has

with the given face, i.e. if the face has the righthand-rule convention and consistency with the normal then

the cell that has a negative sense to it is the cell to which this convention is consistent. For our purposes

we will denote cell− as the “current”-cell and cell+ as the “adjacent”-cell.

Other notations used here are the volume integrals, (F)D, integration over interior faces (F)f , and in-

tegration over face exterior faces (F)∂D on the boundary of the domain.

To assemble the matrix entries using this formulation we can replace δφ with bj to find

a(bj , bi) = (σabj , bi)D + (D∇bj ,∇bi)D
+ (κMIP JbjK, JbiK)f + (JbjK, {{D∂nbi}})f + ({{D∂nbj}}, JbiK)f

+ (κMIP bj , bi)∂D −
1

2
(bj ,D∂nbi)∂D −

1

2
(D∂nbj , bi)∂D

Let us now develop these terms part-by-part. Imagine 3 terms, corresponding to the terms that have either

JK or {{}}, which will be termed part A, B and C.

Diffusion Solver in ChiTech Page 23 of 26

Discontinuous Finite Element Method

4.1 Part A

Part A then becomes

(κMIP JbjK, JbiK)f =

∫
f
κMIP JbjK, JbiK.dA

Now, for simplicity let us replace κMIP with K and only focus on the terms inside the integral (removing

the integral notations), part A now becomes

κMIP JbjK, JbiK

= K(b+j − b
−
j)(b+i − b

−
i)

= K(b+i − b
−
i)b+j −K(b+i − b

−
i)b−j

= K
[
b+i b

+
j − b

−
i b

+
j − b

+
i b
−
j + b−i b

−
j

]
= K

[
− b−i b

+
j + b+i b

+
j − b

+
i b
−
j + b−i b

−
j

]
= K(−b−i b

+
j + b+i b

+
j) + K(−b+i b

−
j + b−i b

−
j) .

(4.1)

Here we can see that, if the sign of the superscipts of the blocked terms are flipped, then the blocked terms

would be the same as the unblocked terms. This allows the local cell to only assemble one half of the

equation (i.e., the blocked part).

4.2 Part B

Part B is

(JbjK, {{D∂nbi}})f =

∫
f
JbjK, {{D∂nbi}}.dA

Let us now expand the terms inside the integral

JbjK, {{D∂nbi}}

=
1

2
D

(
b+j − b

−
j

)(
n̂− · ∇b+i + n̂− · ∇b−i

)
=

1

2
D

(
b+j − b

−
j

)
n̂− · ∇b+i +

1

2
D

(
b+j − b

−
j

)
n̂− · ∇b−i

The blocked term in this equation is symmetric to the non-blocked terms with respect to the current cell

and the adjacent cell. In other words, the normal (n̂) in the blocked portion is with respect to the current

cell (cell−). When we flip the sign of all the ± denotations and set n̂ = −n̂ then we obtain the non-blocked

terms.

Diffusion Solver in ChiTech Page 24 of 26

Discontinuous Finite Element Method

4.3 Part C

Part C is

({{D∂nbj}}, JbiK)f =

∫
f
{{D∂nbj}}, JbiK.dA

Let us now expand the terms inside the integral

{{D∂nbj}}, JbiK

=
1

2

(
b+i − b

−
i

)(
D+n̂ · ∇b+j +D−n̂ · ∇b−j

)
=

1

2
D

(
b+i − b

−
i

)
n̂− · ∇b+j +

1

2
D

(
b+i − b

−
i

)
n̂− · ∇b−j

Again the same symmetry applies as with part B (i.e. flipping the denotations and the signs on the

normals).

Diffusion Solver in ChiTech Page 25 of 26

References

References

[1] Moukalled F., Mangani L., Darwish M., The Finite Volume Method in Computational Fluid Dynamics

- An Advanced Introduction with OpenFOAM and Matlab, Springer, 2016.

[2] Sezai I., Implementation of boundary conditions in pressure-based finite volume methods on unstructured

grids, Numerical Heat Transfer, Part B: Fundamentals, 2017

[3] Blender - a 3D modelling and rendering package, Blender Online Community, Blender Foundation,

Blender Institute, Amsterdam, 2018

[4] Cheng et al, Delaunay Mesh Generation, Chapman & Hall/CRC Computer & Information Science

Series, 2013

Diffusion Solver in ChiTech Page 26 of 26

