Chi-Tech
chi_math::QuadratureTriangle Class Reference

#include <quadrature_triangle.h>

Inheritance diagram for chi_math::QuadratureTriangle:
chi_math::Quadrature ChiObject

Public Member Functions

 QuadratureTriangle (QuadratureOrder order)
 
void dunavant_rule (const double rule_data[][4], const unsigned int n_pts)
 
void dunavant_rule2 (const double *wts, const double *a, const double *b, const unsigned int *permutation_ids, const unsigned int n_wts)
 
- Public Member Functions inherited from chi_math::Quadrature
const std::pair< double, double > & GetRange () const
 
void SetRange (const std::pair< double, double > &in_range)
 
- Public Member Functions inherited from ChiObject
 ChiObject ()
 
 ChiObject (const chi::InputParameters &params)
 
void SetStackID (size_t stack_id)
 
size_t StackID () const
 
virtual void PushOntoStack (std::shared_ptr< ChiObject > &new_object)
 
virtual ~ChiObject ()=default
 

Additional Inherited Members

- Static Public Member Functions inherited from chi_math::Quadrature
static chi::InputParameters GetInputParameters ()
 
- Static Public Member Functions inherited from ChiObject
static chi::InputParameters GetInputParameters ()
 
- Data Fields inherited from chi_math::Quadrature
QuadratureOrder order_
 
std::vector< chi_math::QuadraturePointXYZqpoints_
 
std::vector< double > weights_
 
- Protected Member Functions inherited from chi_math::Quadrature
 Quadrature (const chi::InputParameters &params)
 
 Quadrature (QuadratureOrder in_order)
 
- Protected Attributes inherited from chi_math::Quadrature
std::pair< double, double > range_
 
bool verbose_ = false
 

Detailed Description

Definition at line 11 of file quadrature_triangle.h.

Constructor & Destructor Documentation

◆ QuadratureTriangle()

chi_math::QuadratureTriangle::QuadratureTriangle ( QuadratureOrder  order)
explicit

Initializes quadratures for use on triangles.

A degree 4 rule with six points. This rule can be found in many places including: J.N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle, J. Inst. Math. Appl. 15 (1975), 19–32. We used the code in: L. Zhang, T. Cui, and H. Liu. "A set of symmetric quadrature rules on triangles and tetrahedra" Journal of Computational Mathematics, v. 27, no. 1, 2009, pp. 89-96. to generate additional precision.

Exact for quintics Can be found in "Quadrature on Simplices of Arbitrary Dimension" by Walkington.

Definition at line 11 of file quadrature_triangle.cc.

Member Function Documentation

◆ dunavant_rule()

void chi_math::QuadratureTriangle::dunavant_rule ( const double  rule_data[][4],
const unsigned int  n_pts 
)

Definition at line 1167 of file quadrature_triangle.cc.

◆ dunavant_rule2()

void chi_math::QuadratureTriangle::dunavant_rule2 ( const double *  wts,
const double *  a,
const double *  b,
const unsigned int *  permutation_ids,
const unsigned int  n_wts 
)

Definition at line 1271 of file quadrature_triangle.cc.


The documentation for this class was generated from the following files: